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a b s t r a c t

Drug particle size distribution has a profound impact to the content uniformity in low-dose solid drug
products. We derived theoretically the skewness of potency distribution as a function of particle size
distribution and target dose. It was demonstrated that both skewness and coefficient of variation diverge
simultaneously with inverse square root of the target dose. This scaling relation was observed in recent
experiment and was verified by Monte Carlo (MC) simulation, which was employed for the first time to
eywords:
ontent uniformity
article size
ow-dose drugs
onte Carlo
ixing

lending

solve for the full potency distribution from a random retrieving model. When tested against the criteria
from USP 〈905〉 uniformity of dosage units, MC simulation showed a striking anisotropic distribution of
the data. This suggests a full-scale consideration of the potency distribution is necessary for evaluating the
impacts from particle size distribution and the dose, as compared against the normality assumption used
before. A nomograph of the median particle size and the dose that meets a 99% pass rate was constructed
for the specification of particle size or the lowest dose limit. Furthermore, we showed quantitatively the

rasti

oisson distribution

lowest dose limit can be d

. Introduction

Particle size distribution (PSD) of active pharmaceutical ingredi-
nt (API) is the most critical quality attribute followed by non-ideal
ixing impacting the uniformity of solid dosage forms, in particu-

ar for low-dose drugs (Gordon et al., 1990; Zheng, 2009). A smaller
PI particle size can enhance the statistics of an even distribution
f API among the dosage units and increase the dissolution due to
larger specific surface area. However, it may hinder the proces-

ibility with agglomeration (Orr and Shotton, 1973; Egermann et
l., 1985; Cartilier and Moes, 1989) and result in segregation and
oor blending uniformity. This is because of mismatch in particle
ize and shape (Rhodes, 2008; Jullien and Meakin, 1990), surface
nergy, cohesiveness, and adhesive interaction (Israelachvili, 1995;
uckton, 1995; Podczeck, 1998), electrostatics (Podczeck, 1998;
yron et al., 1997; Lachiver et al., 2006), etc.—just to name a few.
larger size may improve the processibility but compromise the

niformity: the presence of a large API particle in a dosage unit
capsule or tablet) renders it over-potent but leaves the rest units

nder-potent which likely results in the observation of an under-
otent batch based on finite sampling. How to balance the demands
n uniformity, processibility, and dissolution performance by spec-
fying an appropriate API particle size distribution is a constant and
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E-mail address: huangm4@wyeth.com (C.-Y. Huang).
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cally reduced if a cut-off size is imposed by removing oversized particles.
© 2009 Elsevier B.V. All rights reserved.

profound challenge in pharmaceutical development. Particularly,
such a decision has to be made in an early stage based on data
generated by a limited amount of API solid. A reliable expert sys-
tem would be invaluable for specifying an appropriate particle size
based on the physical and chemical nature of the pharmaceutical
ingredients.

Theoretical treatments for the relation between API particle size
and drug product content uniformity (CU) (Train, 1960; Hersey,
1967; Johnson, 1972; Yalkowsky and Bolton, 1990; Rohrs et al.,
2006) can be tracked back to random mixing theory for powders
(Lacey, 1943; Stange, 1954; Poole et al., 1964). Johnson (1972, 1974,
1975) applied a random retrieving model to derive the depen-
dence of drug content variation on API particle size distribution.
The ensemble of dosage units was constructed via random retriev-
ing of ideally mixed API particles that follows Poisson statistics. The
applicability of the model relies on the good faith of ideal mixing,
which can be interpreted as the lack of spatial correlation for API
particles beyond the length scale of the dosage unit. In reality, this
may be achieved through various techniques such as granulations.
The applicability is also limited by the occurrence of significant par-
ticle size reduction during the mixing and other processing steps.
The particle size distribution used for the model should be the final

size distribution before tabletting or capsulation. For cohesive pow-
ders that form strong agglomerates (Orr and Shotton, 1973), each
agglomerate entity should be regarded as a single large particle.
Only under the circumstance that the API particles do not experi-
ence significant size reduction or form unbreakable agglomerates,

http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:huangm4@wyeth.com
dx.doi.org/10.1016/j.ijpharm.2009.09.009


l Jour

t
t
a
a
t
b
e
l
p
c
t

c
o
t
t
t
m
p
A
s
S
o
c
a
p
b
s
f
a
s
a
b
d
o
f
b
d
r
s
(
f
v
t
n
F
m
w

s
b
u
d
a
n
t
a
t
t
C
d
d
t
t
M
n

C.-Y. Huang, M. Sherry Ku / Internationa

he initial API particle size distribution can be used as the input
o the model. Using similar assumptions but a different analytical
pproach, Yalkowsky and Bolton (1990) derived the content vari-
tion that is mathematically equivalent to Johnson’s. Furthermore,
hey gave the equation for API with a log-normal particle size distri-
ution and the limit against the USP Content Uniformity test. The
quivalency of Johnson’s and Yalkowsky’s results was confirmed
ater by Rohrs et al. (2006), who also showed a nomograph of mean
article size and the lowest dose limit for passing USP28/NF23 CU
riteria. The equivalency is not surprising since the target dose and
he particle size distribution are de-coupled in these models.

The most important result of the above theoretical studies is the
oefficient of variation Cv of the drug potency distribution. Based
n the predicted Cv, a normal potency distribution is assumed and
he confidence of passing the CU criteria can be calculated. Note
hat there is no any theoretical ground that a drug potency dis-
ribution must be normal and the skewness (skewness factor, ˛3)

ust go to zero. Yalkowsky and Bolton (1990) warned that the
otency distribution is not normal if the standard deviation of the
PI particle size distribution is large. In fact, many experiments
howed that the potency distributions were highly skewed. Orr and
hotton (1973) and Orr and Sallam (1978) reported the observation
f positive skewness in potency distribution with highly diluted
ohesive API powders. They attributed the positive skewness to the
gglomerates of the cohesive powders. Sallam and Orr (1985, 1986)
roposed a critical API particle size, above which a good mixing can
e achieved and that both Cv and ˛3 increase with the mean particle
ize. When below the critical size, the API particles are cohesive and
orm large agglomerates leading to the observation of increasing Cv
nd ˛3 with decreasing API particle size. In addition to the particle
ize distribution, the target dose also affects the skewness. Rohrs et
l. (2006) recently reported that under a given particle size distri-
ution, the skewness increases anomalously with decreasing target
ose. Reducing the target dose not only results in an increase of Cv
f the potency distribution but also leads to a stronger deviation
rom normality. Therefore, the full spectrum of potency distribution
ecomes necessary for the study of the content uniformity in low-
ose cases. Unfortunately, to date no full solution to the random
etrieving theory is available. The only published simulation to con-
truct the potency distribution was reported by Zhang and Johnson
1997) and Johnson (2009) based on even filling of API particles
rom different bins (sizes) into dosage units. In their model, the
ariability of each dosage unit is one API particle per bin in contrast
o the random retrieving theory, which allows all accessible combi-
ations of API particles from different bins drawn into a dosage unit.
urthermore, Zhang and Johnson’s simulation algorithm is deter-
inistic and carries correlation artifacts into statistics. More details
ill be discussed in Theory.

In this work we applied random retrieving theory to derive the
kewness from the third central moment of the potency distri-
ution. We found that the potency distribution will skew toward
nder-potency while both skewness and coefficient of variation
iverge anomalously as the target dose approaches zero. The
nomaly, consistent with the observation from experiments, sig-
als the breakdown of the normality assumption used in previous
heoretical treatments for low-dose content uniformity. We then
pplied Monte Carlo method to solve the full potency distribution of
he random retrieving theory for the first time. When tested against
he criteria from USP 〈905〉 uniformity of dosage units, the Monte
arlo simulation showed a striking anisotropic distribution of the
ata. This observation denotes a tendency that a skewed potency

istribution increases the chance of falsely passing the USP cri-
eria which are based on a 95% chance of potency values within
he 85–115% label claim assuming a normal potency distribution.

onte Carlo simulation was then employed to construct a large
umber of CU tests according to USP 〈905〉. The pass rate can be
nal of Pharmaceutics 383 (2010) 70–80 71

calculated according to a given target dose and API particle size dis-
tribution. To facilitate a systematic comparison and the application
for particle size specification, a nomograph of the median particle
size and the dose limit that meets a 99% pass rate was constructed
for various d90/d50 ratios. We examined special cases when a cut-
off limit of oversized particles was imposed and found the passing
boundaries on the nomograph changed drastically. This observa-
tion indicates that the safety margin to meet the regulatory criteria
can increase significantly, or alternatively, the lowest dose limit can
be extended to a much smaller value simply by removing oversized
particles.

We arranged this article in the following order: the skewness of
the potency distribution was derived first followed by the intro-
duction of the Monte Carlo simulation and the computational
algorithm. The physical origin of the skewness in the potency dis-
tribution was discussed as well as the under-potent batch mean.
The nomographs of the lowest dose limit under various geometric
standard deviations and cut-off sizes were given followed by the
discussion of their applications.

2. Theory

2.1. Skewness of potency distribution based on a random
retrieving theory

The skewness ˛3 and coefficient of variation Cv derived from a
random retrieving theory where the number of API particles in a
dosage unit follows a Poisson distribution can be written as

˛3 = 〈w〉1/2〈w3〉
D1/2〈w2〉3/2

, (1)

Cv = 〈w2〉1/2

D1/2〈w〉1/2
. (2)

Here D is the target dose and w is the equivalent API weight dis-
tribution converted from the number frequency-size distribution
of the API particles. Detailed derivations are in Appendix A. Sev-
eral features can be immediately drawn from the equations above.
Firstly, the target dose is de-coupled from particle size distribution,
which affects the potency fluctuations via various moments of the
corresponding weight distribution.

Secondly, both ˛3 and Cv are proportional to the inverse square
root of the target dose. As the target dose approaches zero, ˛3 and Cv
blow up simultaneously. The anomalous increases of ˛3 and Cv and
the scaling relation with low dose have been observed in experi-
ment. Fig. 1(a) and (b) show the re-construction of experiment data
by Rohrs et al. (2006) where the percentage coefficient of variation
and the skewness are plotted on a log–log scale against the target
dose. It is found that in both figures, the data points follow closely
the dashed lines which show a slope of −1/2 according to the scal-
ing relation from Eqs. (1) and (2). The observed scaling relation
supports the legitimacy of the random retrieving theory and the
employment of Poisson distribution.

Thirdly, ˛3 is always positive due to the skewed nature of
Poisson distribution and that the number of particles cannot be
negative. In experiment, small negative skewness was observed
sometimes when the target dose was large or the mean particle
size was small (Sallam and Orr, 1985, 1986; Rohrs et al., 2006). This
could be due to the variability from finite number of sampling since
in either case the theoretical skewness approaches zero. Fourthly,

Eq. (1) shows a stronger dependence on the variance of particle size
distribution than Eq. (2). Consequently, ˛3 is more susceptible to
low target dose than Cv when the particle size distribution is wide.
This notion is immensely critical: as the target dose decreases, the
expected potency distribution will quickly deviate from a normal
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ig. 1. Re-construction of (a) the percentage coefficient of variation and (b) the
kewness versus the target dose on a log–log scale from the experiment results by
ohrs et al. (2006). The dashed lines show a slope of −1/2, the scaling relation from
qs. (1) and (2).

istribution before Cv becomes significantly large. Therefore, the
ormality assumption breaks down at adequately low target dose.
eglecting this fact could lead to a potential serious problem of
ver-potent units from the long tail of a positively skewed potency
istribution.

To further elucidate the origin of the skewness, Eq. (1) can be
ritten in a discrete form following the notations used in Johnson’s
aper (Johnson, 1972):

3 =
√

��

6D

∑N
i=1fid

6
i(∑N

i=1fid
3
i

)3/2
, (3)

here � is the true density of the API and fi is the volume faction of
PI particles from a bin with a volume-equivalent diameter, di. The
uctuation of number of particles retrieved from the ith bin has a
imple scaling relation:

ıni

〈ni〉
∼

√
Var(ni)

〈ni〉
∼
(

D

�
fi

)−1/2
di

3/2.

his relation explains that the augment of the fluctuation field from
arge particles upon the reduction of dose drives the potency dis-
ribution skewed positively. Finally, for the case of a log-normal
article size distribution, Eq. (1) becomes√

��

3 =

6D
d3/2

m (1 + C2)
15

, (4)

here c is the arithmetic (number-average) coefficient of variation
nd dm is the arithmetic mean diameter of the particle size distribu-
ion. Again, Eq. (4) shows a greater susceptibility to the variance of
al of Pharmaceutics 383 (2010) 70–80

the particle distribution than the coefficient of variation (Eq. (A17)
in Appendix A).

2.2. Monte Carlo simulation

In this study, Monte Carlo simulation is used to solve the full
solution to the random retrieving theory and to simulate content
uniformity tests according to USP 〈905〉. Monte Carlo simulation
finds a wide application in sciences and engineering (Rubinstein
and Kroese, 2008; Bonate, 2001; Armitage et al., 2001) where the
evolution and properties of a complex dynamic system with a large
number of degrees of freedom can be tracked. The algorithm used
here is a simple rejection method to construct random events that
follow a Poisson probability. Technically, this can be achieved via
generating first a deviate of uniform distribution followed by ran-
dom shooting to obtain a random deviate falling inside a Poisson
distribution (Press et al., 2007).

To construct a large ensemble of dosage units, the drug particles
are first partitioned into N bins according to their sizes; each bin
has a representative particle diameter. Here, N = 300 is used in
all computations. The Poisson probability for a random variable ni
equal to x is expressed as

P(x) = 〈ni〉xe−〈ni〉

x!
, (5a)

where 〈ni〉 is the average number of particles drawn from the ith
bin and is determined by

〈ni〉 = 6
��

fi

(
D1/3

di

)3

. (5b)

This way, the potency distribution can be constructed by repeat-
edly generating many dosage units, say an ensemble of 10 million
tablets, via a random process of selecting the variables followed by
multiplication of the corresponding mass, and summation.

The potency strength distribution is a linear combination of fluc-
tuation from multiple independent bins, or equivalently, modes.
The fluctuation of each mode is determined solely by the param-
eter 〈ni〉. If the particle size of every bin is scaled up by a factor of
t times (i.e. the entire distribution curve is shifted rightwards by
ln t) and the target dose is scaled up by a factor of t3 times, 〈ni〉 and,
thus, the entire set of parameters remain the same. Consequently,
the potency distribution of the scaled up system must be identical
to the original potency distribution. Moving along any line with a
slope of 1/3 on the logarithmic d50–D plot represents the loci of
identical potency distribution. This is valid as long as the confor-
mation of the particle size distribution curve remains unchanged
during the scaling up, i.e. only a horizontal shift is involved on a
semi-log distribution plot. The conclusion is universal for any orig-
inal particle size distribution. If the conformation is changed such as
the intervention by screening off oversized particles (size cut-off),
the parameters controlling the multivariate fluctuation will change
accordingly. Consequently, the power-law relation for identical
potency distribution breaks down. Using this power-law relation
would allow one to experimentally verify the random retrieving
model with larger API particle sizes and higher doses to circumvent
blending heterogeneity caused by fine particles.

Previously, Zhang and Johnson (1997) and Johnson (2009) used
computer simulation to study the effect of drug particle size on the
content uniformity of low-dose solid dosage forms. Their consid-
eration is based on even filling of API particles from each bin into

every dosage unit. Due to the discrete nature of the particles, the
average particle number from each bin is divided into an integer
part and a remainder, which will rollover during the filling pro-
cess and appear as an extra particle in every several units i.e. when
the accumulated remainder exceeds one. Therefore, all dose units



C.-Y. Huang, M. Sherry Ku / International Journal of Pharmaceutics 383 (2010) 70–80 73

Table 1
Criteria for USP 〈905〉 Content Uniformity.

(A) General formula

AV = |M − X̄| + ks, X̄ = 1
n

∑n

j=1
xj, s =

√∑n

j=1
(xj−X̄)2

n−1

(B) Reference value M
T ≤ 101.5 X̄ > 101.5 M = 101.5 T > 101.5 X̄ > T M = T

X̄ < 98.5 M = 98.5 X̄ < 98.5 M = 98.5
98.5 ≤ X̄ ≤ 101.5 M = X̄ 98.5 ≤ X̄ ≤ T M = X̄

(C) Acceptance criteria
Stage 1 (n = 10, k = 2.4) Stage 2 (n = 30, k = 2)
AV ≤ L1 AV ≤ L1

xmax ≤ (1 + L2 × 0.01)M
xmin ≥ (1 − L2 × 0.01)M

(D) Notation
AV: Acceptance value; X̄: mean; s: sample standard deviation
xmin: minimal individual value; xmax: maximal individual value

T = D/L
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T: target content per dosage unit, expressed as the percentage of the label claim:
LC: label claim
L1 = 15 and L2 = 25 unless otherwise specified in the individual monograph

ave the same minimal dose strength that corresponds to the inte-
er part from each bin. The variability of the dose strength from one
nit to another depends on the combination of the appearance of
he extra one particle from each bin. The combination is calculated
y a deterministic algorithm that depends on the initial condition.
he combination has an upper bound for the maximal strength as
he extra one particle from each bin appears simultaneously.

Comparing the Monte Carlo (MC) method and the method by
hang and Johnson (Z–J), both methods can handle any particle
ize distribution by partitioning the API particles into different bins
ccording to the sizes. Both methods use the set of average number
f particles from each bin as the only set of parameters for simu-
ation. However, the assumptions for the statistical basis and the
omputation algorithms used in these two models are very differ-
nt. The differences are explained as follows. Firstly, the MC method
reates an ensemble of dosage units representing overlapping of
umerous batches of drug products that have been prepared inde-
endently to the best extent of mixing and the formation of the
osage units. In fact, any physical dosage unit from manufacturing
an find a corresponding configuration in the N-dimension man-
fold sampled by the MC model. The assumption used in the Z–J

ethod asserts that every particle bin must contribute the same
inimum number of particles to every dosage unit; this assump-

ion is not realistic to any known process in practice. Compared to
he entire volume of the manifold sampled by the MC method, the
ccessible states in Z–J method are restricted to the vertices of a
ube with unity length in the N-dimension space. The tremendous
eduction of entropy in Z–J method imposes a very heavy strain
pon the justification of its assumption and does not reflect the
andom nature of powder mixing.

Secondly, the construction of dosage units in MC method is
random process while in Z–J method it is deterministic. The

mployment of random process is extremely important (Huang and
uthukumar, 1997; Mamaluy and Huang, 2004) to avoid correla-

ion artifacts in order to obtain a meaningful statistical outcome.
he deterministic algorithm used in Z–J method can easily intro-
uce invalid correlation that has no physical ground. For instance,

n an example illustrated by Johnson (Fig. 3.1 in Johnson, 2009) that
n every 20 dosage units, a particle from a bin, say A, appearing once
n every 10 units will always appear together with another particle

rom a different bin, say B, that appears once in every 4 units. How-
ver, if the initial condition changes to A particles appearing only in
he unit number 1, 11, 21, etc. and B particles appearing in the unit
umber 4, 8, 12, etc., A and B particles will never meet in the same
osage unit. In either case, a correlation artifact is built between
C 100%

the two types of particles and the result depends on the initial con-
dition. The MC method does not include any such artifact or any
dependence on the initial condition. Thirdly, the upper bound in
Z–J method increases with the number of bins used in the model
and the potency profile changes with it as well. One soon falls into
a tedious argument on the selection of the system that could not
converge to a definite result. The MC method can avoid such a hur-
dle and show no dependence on the selection of the number of bins
once it reaches an adequate resolution.

2.3. USP 〈905〉 uniformity of dosage units

The new criteria from USP 〈905〉 Uniformity of Dosages Units
(USP31-NF29, 2009) harmonized with European Pharmacopoeia
2.9.40. Uniformity of dosage units (European Pharmacopoeia, 2008)
are based on a two-stage process using acceptance values (AV). For
content uniformity, 10 dosage units are examined first to obtain the
Stage-1 AV. If the AV exceeds the criterion, the first test fails and the
process will enter Stage 2 by examining additional 20 units. If the
Stage-2 AV and the extreme of the 30 units are compliant with the
criteria, the test passes. Details of the formula and passing crite-
ria are depicted in Table 1. Note that the new guideline considers
simultaneously the interplays of the potency mean (X̄), the sample
standard deviation (s), and the ratio of the target dose to the label
claim. In order to pass the Stage 1, the mean and standard devia-
tion of the samples must fall, schematically, inside a trapezoidal
area defined by the criteria. It is, however, complicated to pre-
dict the conditions based a given confidence. Bergum and Li (2007)
and Cholayudth (2008) applied probability analysis to evaluate the
pass rates based on the assumption of normal distributions. Their
derivations involved various approximations and required numer-
ical integrations. Moving beyond the assumption of normality, the
analytical tractability is dim.

2.4. Numerical algorithm

To facilitate a systematic investigation on the interplays of the
particle size, standard deviation, and the lowest dose limit, we here-
after focus only on log-normal particle size distribution that takes

the following form in our analysis:

f (d) = 1√
2� ln �g

exp

(
− (ln d − ln d50)2

2(ln �g)2

)
. (6)
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Fig. 2. The flowchart of the simulation algorithm. In addition to the variables defined in Appendix A and Table 1, x1pass and x2pass are the counts for passing Stages 1 and 2,
respectively; N is the count for CU tests. ni is the particle number randomly drawn from the ith bin and mi is the equivalent spherical volume of the corresponding particle.
The Passrate is the sum of x1pass and x2pass divided by N.

Fig. 3. Effect of the number of bins N on the potency distribution calculated from
log-normal API size distribution with d50 = 10 �m, �g = 3.5, and D/� = 0.462 mg. A
larger N denotes a finer partition that mimics a continuous distribution on the cost
of longer computation time. The figure shows no significant difference among the
Ns tested; an N = 300 is selected for all computations hereafter.

Fig. 4. Drug potency distribution at various target dose Ds. All the curves have the
same mean of 100. As D decreases, the span becomes wider and the mode shifts
toward under-potency (positive skewness). The shifting is originated from the aug-
ment of the number fluctuation for large particles upon the reduction of D. The API
has a log-normal size distribution with d50 = 10 �m and �g = 3.
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Fig. 5. Cumulative potency distribution functions of Fig. 4 reveal that at a low target
dose the median (50% line) is less than the average potency of 100. This obser-
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ation elucidates an important cause, among others, of under-potency which is
riginated from the positive skewness, independent of the manufacturing process
r the ingredients’ property.

Here f(d) is the volume fraction for particle size d, �g is
he geometric standard deviation; d50 is the median diameter.
or numerical computations, the truncated lengths are placed at
4ln �g about the median.

The probability of passing the USP 〈905〉 is simulated by per-
orming content uniformity test a million times; in each time 10
nits are constructed to examine the mean and the standard devi-
tion and to obtain AV for Stage 1 (Table 1). If it fails, an additional 20
nits will be generated for Stage 2. After many repeated sampling,
statistical basis is established and the pass rates for Stages 1 and 2
an be calculated. This computer simulation algorithm is depicted
ig. 2. The program is coded in Fortran and is executed in high-
peed workstations. The inputs of the program are the target dose
, the true density �, and the volume fraction-particle size distribu-

ion and the outputs are the pass rates of Stages 1 and 2. Note that
his numerical simulation can be applied to practically any particle
ize distribution including skewed or multi-modal distributions. It
lso allows one to implement a cut-off diameter by discarding all
he bins that have a particle size larger than the cut-off.

. Results and discussion

To ensure an adequate numerical accuracy within a bear-
ble computation time frame, we have tested several total bins.
ig. 3 depicts the potency distribution using API particles with
50 = 10 �m, �g = 3.5, and D/�* = 0.462 mg under various total bin
umbers: N = 50, 100, 200, 300, and 600. A larger N denotes a finer
artition that mimics a continuous distribution on the cost of longer
omputation time. The figure shows no significant difference after

is larger than 100, indicative of the independence on the size of
he system. An N = 300 is selected for all computations hereafter.

The calculated potency distribution of dosage units and its
umulative distribution are depicted in Figs. 4 and 5. Various target
oses ranging from 1 mg to 0.005 mg are simulated from a distri-
ution with d50 = 10 �m and �g = 3. This particle size distribution is
ypically seen from micronized API for low-dose compounds. The
urves feature the same mean of 100 but different modes, stan-
ard deviations, and skewness. For example, when D = 1 mg, the

elative standard deviation is 0.951 and the skewness is 3.912. The
urve is similar to a normal distribution with the mode close to 100.
s the dose decreases, the standard deviation increases, the mode
oves towards further left and the skewness becomes larger. A
Fig. 6. Comparison of Cv and ˛3 calculated from MC simulation in Fig. 4 (legends)
and the predictions (solid curves) calculated from Eq. (3) and Eq. (A12) against the
target dose. Note that both Cv and ˛3 are proportional to 1/

√
D.

50% line is constructed in Fig. 5 to elucidate the trend of shifting
towards under-potency. As Cv surges upon the decreasing dose,
the deviation from normality becomes more severe, indicating a
tendency towards an under-potent assay result in finite-number
sampling. This tendency, independent of other causes such as loss
of drug or analytical error, is originated from the positive skew-
ness. Fig. 6 depicts the comparison of simulated skewness and Cv
obtained from Fig. 4 and their analytical counterparts (solid curves)
obtained from Eqs. (3) and (A12), which give ˛3 = 4.246(D/�*)−0.5

and Cv = 0.9556(D/�*)−0.5. Here, �* represents the specific (true)
density of the API. A strikingly close agreement between the sim-
ulation (computer experimentation) and the analytical prediction
is observed. This justifies the validity of the MC methodology. In
addition, the −1/2 slope on the logarithmic plot shown by the sim-
ulation data confirms the scaling dependence on D according to
Eqs. (1) and (2) and supports the observation of the anomaly in
experiment (Fig. 1).

A graphic representation of USP 〈905〉 Stage 1 test is depicted in
Fig. 7 in which a pyramid area with a flat top (a trapezoid) denotes
the pass zone defined by the criteria. Here the y-axis denotes the
sample standard deviation (s) and the x-axis denotes the sample
potency mean (X̄). The flat top is when X̄ between 98.5% and 101.5%
and s = 15/2.4 = 6.25. When s = 0, the X̄ must fall between 93.5% and
116.5%. Any data falling outside the pass zone indicates a failure
to Stage 1. For the batch of dosage units obtained from Fig. 4 with
D = 1 mg, 10,000 Stage 1 results are shown in Fig. 7(1a). Each dot
represents a result obtained from randomly retrieving 10 dosage
units from the batch. After each run of the test, the batch is replen-
ished with the same units drawn so that the distribution maintains
the same. For comparison, a second batch based on an assumed
normal potency distribution of the same Cv is constructed and the
same tests are repeated in Fig. 7(1b). It is evident that in Fig. 7(1a)
the distribution of data points is highly anisotropic in contrary to
the isotropic distribution in Fig. 7(1b). This is a direct consequence
from the positive skewness. The comparison also reveals that the
pass rate is artificially increased by assuming a normal potency dis-
tribution. Such a fallacy becomes increasingly severe for D = 0.1 mg
as shown in Fig. 7(2a) and (2b). Note for D = 0.01 mg the normal dis-
tribution assumption renders an underestimate of the pass rate as
shown in Fig. 7(3a) and (3b). The comparison confirms significant
deviations of the real test results against the Stage 1 criteria from
the results based on the normality assumption.
The pass rate of the CU test can be determined by the fraction
of the dots falling inside the designated area after a million rep-
etitions. For those failing from Stage 1, Stage 2 is performed. The
prediction of how the pass rate changes with the target dose D
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Fig. 7. Distribution of the standard deviation (s) and the mean X̄ of 104 CU tests from Fig. 4. Each dot represents a test result from 10 randomly selected dosage units; the
t 3a rep
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rapezoidal shape is the Stage-1 boundary defined by USP 〈905〉. Parts 1a, 2a, and
ounterparts simulated under the assumption of a normal potency distribution. It
ailure probability at lower D than the prediction by an assumed normal distributio

mg)/�* is shown in Fig. 8. Here the API has a size distribution of
50 = 50 �m and �g = 2. The solid curve denotes the combined pass
ate from Stages 1 and 2. As shown by the curve and the dotted
ines, the lowest dose limit for 95% passing rate is 0.16 mg and that
or 99% pass rate is 0.3 mg. The long-dashed curve represents the
ass rate solely from Stage 1, which is the dominant term when the
ose is 0.3 mg or higher. The short-dashed curve denotes the per-
ent contribution from Stage 2 to the combined pass rate. When the
ose goes below 0.3 mg, the reliance on Stage 2 becomes significant
hich is undesirable. For example, in the case of 95% combined pass

ate, 23% of the total passing is attributed to Stage 2, whereas only

% attributed to Stage 2 when the combined pass rate is 99%. As a
esult, the simulated nomogram is set to a 99% pass rate (Fig. 9). In
any applications, the API particle size distributions are within a

ange of �g between 2 and 3. A common practice following a three-
ier particle size specification of d90/d50 = 30/10, 70/25 and 200/75
resent D = 1 mg, 0.1 mg, and 0.01 mg, respectively. Parts 1b, 2b, and 3b denote the
dent that the skewness renders a higher failure probability at higher D and lower

has been used by the Author’s company for nearly 20 years which
will be discussed in detail in the forthcoming paper. To further elu-
cidate the underlying reason why API particle size specification is
set with �g < 3, the probability of passing is simulated with a size
distribution of d50 = 50 �m and �g = 3 (dot-dashed curve). Evidently
the pass rate declines drastically as the size distribution is broaden.

To facilitate the discussion and application of the relations
among the median particle size (d50), the geometric standard
deviation (�g), and the limit of the lowest target dose (D/�*), a
nomograph based on 99% confidence of passing USP 〈905〉 is con-
structed in Fig. 9. The lines in a descending fashion from the top are

corresponding to the following order: �g = 1.01, 1.5, 2, 2.5, 3, 3.5,
and 4, respectively. These lines can be regarded as the maximal d50
for a given target dose to warrant a 99% pass rate. For instance, at a
given dose of 1 mg, d50 has to be less than 20.4 �m if �g is 3.0 (i.e.
d90 is less than 83.4 �m as shown in Table 2). Should the API have
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Fig. 8. Prediction of the pass rate versus the target dose according to USP 〈905〉 CU
Criteria. The solid curve denotes the combined pass rate from Stages 1 and 2 for a
particle size distribution of d50 = 50 �m and �g = 2. The long-dashed curve denotes
t
f
c

a
u
b
a
e

Table 2
Applications of the nomograph in Fig. 9. Part A depicts the relation between the
maximal d90/d50 and the lowest dose when d50 = 20 �m. Part B depicts the maximal
d50 when D/�* = 1 mg.

(A) d50 = 20 �m

�g d90/d50 D/�* (mg)

1.5 1.68 0.0027
2 2.43 0.022
2.5 3.23 0.17
3 4.09 0.94
3.5 4.98 3.96

(B) D/�* = 1 mg

�g d90/d50 d50 (�m)

1.5 1.68 142.85
2 2.43 71.42

g

F
o
1

he pass rate from Stage 1. The short-dashed curve denotes the fraction of passing
rom Stage 2. The dot-dashed curve represents the pass rate when the particle size
hanges to d50 = 50 �m and �g = 3.

narrower particle size distribution, say, �g = 2.5, d50 can increase

p to 36.16 �m. In this way one can set a particle size specification
ased on the target dose to select an appropriate API processing step
ccording to the capability of the micronizing or milling or sieving
quipment. The other way of using the nomograph is to estimate

ig. 9. Nomograph of the median particle size (d50) versus the dose limit (D/�*) at variou
f USP 〈905〉. The drug particle size follows a log-normal distribution. The lines from the to
.68, 2.43, 3.23, 4.09, 4.98, and 5.91, respectively.
2.5 3.23 36.16
3 4.09 20.41
3.5 4.98 12.64

the lowest dose strength that can be made uniformly from a given
particle size distribution. For instance, an API with d50 at 20 �m
and �g = 2.5, the lowest dose it can be made uniformly is 0.17 mg
(Table 2). If the required dose strength is 1 mg, it leaves a comfort-
able margin for possible non-ideal mixing and analytical error. On
the other hand, if � = 3, the lowest dose limit is 0.94 mg which may

be too close to 1 mg. The API should be further milled or sieved to
improve its size distribution. Therefore, the nomograph can be used
as an in-process check to determine the acceptability of the API after
milling. Lastly, one may use the nomograph to define a design space

s geometric standard deviations (�g) for 99% combined pass rate of Stages 1 and 2
p are cases of �g = 1.01, 1.5, 2, 2.5, 3, 3.5, and 4. The corresponding d90/d50 are 1.01,
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tolerable and the boundary curves bend upwards. The onset d50 for
such a change is equal to �c/�4

g which has the values of 31.25 �m
(for �c = 500) and 18.75 �m (for �c = 300) �m for set A. For set B,
the onsets are 6.172 �m (�c = 500) and 3.703 �m (�c = 300), respec-
tively. Though the advantage of removing large particles from an
ig. 10. The scaling coefficient � (sphere) from Fig. 9 versus �g . The dotted curve
xhibits a cubic polynomial fitting. The triangular symbols denote the scaling coef-
cient obtained from Fig. 3 in the paper by Rohrs et al. for 99% pass rate according
o Stage 1 of USP28/NF23.

FDA, 2003; Yu, 2007; Lionberger et al., 2008) of particle sizes and
nsure a certain confidence level in passing the content uniformity
est.

As mentioned in Section 2.2, an important feature in Fig. 9 is
hat all lines of a slope of 1/3 represent the loci of identical potency
istribution. The 1/3 power-law relation is universal except when
he conformation of particle size distribution changes such as the
hange of �g or size cut-off. A power-law equation is, thus, given as

50 = 1
�

(
D

�∗

)1/3
, (7)

here the scaling coefficient � is a function of �g. Fig. 10 depicts
he variation of � (sphere) against �g. A cubic polynomial (dotted
urve) is obtained by data fitting:

= 0.0014�3
g + 0.0049�2

g − 0.0161�g + 0.0154. (8)

Eq. (8) can be used to generate Table 2. The triangular symbols in
ig. 10 denote the scaling coefficient obtained from the nomograph
Fig. 3) given by Rohrs et al. Though the difference is not significant,
he interpretation is very different: The nomograph by Rohrs et al.
as calculated based on a threshold Cv that assures 99% pass rate

f USP28/NF23 Stage 1. In our case, the threshold Cv decreases with
g and the pass rate is for combined Stages 1 and 2 of USP 〈905〉.

Each line in Fig. 9 represents the loci of identical potency dis-
ribution with a set of threshold coefficient of variation Cc

v and
kewness ˛c

3 that warrant a 99% pass rate. A list of �g and the cor-
esponding Cc

v and ˛c
3 are depicted in Table 3. If �g is very close to
, i.e. when the particle size distribution is like a spike, the potency
istribution is a normal distribution. Under such a circumstance, Cc

v
s 5.724 and the skewness is zero. This threshold can be regarded as
he threshold calculated under the assumption of a normal potency
istribution. As �g increases to 3.5, ˛c

3 increases to 24.648 and Cc
v

able 3
hreshold Cc

v and skewness ˛c
3 of the potency distribution for 99.0% pass rate as

function of the �g of the particle size distribution. Note that Cc
v can be signifi-

antly lower than the value predicted by an assumed normal potency distribution
Cv = 5.724).

�g Cc
v Skewness ˛c

3

1.01 5.724 0.0585
1.5 5.630 0.235
2 4.213 1.511
2.5 3.129 5.112
3 2.915 13.013
3.5 2.859 24.648
al of Pharmaceutics 383 (2010) 70–80

must decrease to 2.859 to compensate for the skewness. Unfor-
tunately, the new USP 〈905〉 criteria did not consider a skewed
potency distribution. It improves over the old criteria with grad-
uated smaller Cv when the mean potency is further away from the
theoretical 100%. However, the new criteria assume a potency dis-
tribution to be normal. When the distribution is skewed with a few
large API particles -as most cases would be, the chance of falsely
passing the USP criteria increases (Fig. 7). This may post a severe
discrepancy when the particle size has a wide distribution or the
target dose is very low and results in the release of a sub-quality
batch.

There is, however, an easy remedy to correct a wide API particle
size distribution. Since the over-potent skewness is affected mostly
by oversized API particles, these particles can be removed by pre-
screening or milling with an end sieve such as Fritz Mill and Comil.
Sieving only works effectively on larger sizes since small particles
tend to agglomerate and adhere to the fine sieves, preventing effec-
tive removal of the oversized particles. To this account, Monte Carlo
simulation is employed with a cut-off particle size representing the
sieve opening. The cut-off can be achieved by removing the bins of
particle size larger than the cut-off. Fig. 11 is a nomograph of d50
versus the lowest dose limit (D/�*) with different cut-off particle
size for a 99% pass rate. Set A represents �g = 2 and the cut-off sizes
are 300 �m (solid), 500 �m (dashed), and infinite (no cut-off, dot-
ted). As shown in the figure, the lowest dose limit for d50 = 100 �m
without cut-off is 2.74 mg. It reduces to 0.882 mg for a 500 �m cut-
off and to 0.468 mg for a 300 �m cut-off – a five folds reduction in
the lowest dose limit. Similarly, Set B represents �g = 3 and the cut-
off sizes are 300 �m (solid), 500 �m (dashed), and infinite (dotted).
The lowest dose limit for d50 = 100 �m without cut-off is 117.6 mg.
It is 1.392 mg for a 500 �m cut-off and 0.486 mg for a 300 �m cut-off
– a 240 folds reduction in the lowest dose limit. The non-linearity
is originated from the removal of bins from the statistic basis by
the cut-off. Since the particle size distributions are truncated at
4ln �g about the median (d50), the largest particle size is d50 × �4

g .
When this value is larger than the cut-off (�c), oversized particles
are filtered off and the total fluctuation is, thus, suppressed. Con-
sequently, a larger particle size or a smaller target dosage becomes
Fig. 11. Nomograph of the median particle size (d50) versus the dose limit (D/�*)
with different cut-off size. Set A represents the family of �g = 2 with a cut-off at
300 �m (solid), 500 �m (dashed), and no cut-off (dotted), respectively. Set B repre-
sents the family of �g = 3 with a cut-off at 300 �m (solid), 500 �m (dashed), and no
cut-off (dotted), respectively.
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PI batch is known to enhance the content uniformity, this study
hows for the first time a quantitative comparison on the effective-
ess in improving content uniformity brought by a simple sieving
tep in the manufacture of low-dose drugs.

. Conclusions

Within the frame of random retrieving theory and Poisson dis-
ribution, we derived analytically the skewness of the potency
istribution and demonstrated that as the target dose decreases,
potency distribution will quickly deviate from normality before

v becomes significantly large. The positive skewness, originated
rom the augment of the number fluctuation of large particles, ren-
ers a higher probability of obtaining an under-potent CU result,

ndependent of other possible causes.
Monte Carlo simulation was used for the first time to solve

he full potency distribution of the random retrieving theory. The
imulation results were in agreement with the theoretical analy-
is and showed a striking anisotropy of data distribution against
he prediction based on normality assumption. Consequently, the
hreshold Cc

v must decrease to compensate for the skewness in
rder to maintain a certain level of pass rate.

A nomograph for median particle size and dose with a 99%
ass rate according to USP 〈905〉 criteria was constructed. This
omograph is useful in locating the lowest dose limit for a given
article size distribution or to set particle size specification accord-

ng to a chosen target dose. The interplays of particle size, standard
eviation, and dose render a design space within which a certain
onfidence level of passing the CU test is ensured.

Lastly, we showed quantitatively that the lowest dose limit can
e reduced drastically if a cut-off size is imposed by removing over-
ized particles. For the distribution d50 = 100 �m and �g = 3, the
owest dose limit can be reduced for more than 200 folds if a cut-off
ength of 300 �m is imposed.
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ppendix A.

In this appendix, we developed a random retrieving theory sim-
lar to the strategy used by Yalkowsky and Bolton (1990). Each
osage unit will randomly draw particles from an ideally mixed
lend of excipients and API with a known load and particle size dis-
ribution. Though the target dose is low, the number of API particles

ust be very large in order to warrant a meaningful statistical basis.
ssume n is the number of API particles appearing in a dosage unit
nd w is the mass of a particle. Both n and w are random variables
hat n follows a Poisson distribution and w follows an equivalent

ass distribution converted from the particle size distribution. The
otency strength G in a dosage unit is the sum of the mass of n API
articles:

=
n∑

i=1

wi, (A1)

here wi is the mass of the ith particle. Thus, the potency mean

nd the variance can be expressed as

G〉 ≡ Go = 〈
n∑

i=1

wi〉 = 〈n〉〈w〉 (A2)
nal of Pharmaceutics 383 (2010) 70–80 79

and

Var(G) = 〈(G − Go)2〉 = 〈n〉Var(w) + Var(n)〈w〉2. (A3)

Here Var(w) and Var(n) represent the variances of w and n,
respectively. Similarly, the third central moment of G can be
expressed as

�3(G) = 〈(G − Go)3〉 = 〈n〉�3(w) + 3〈w〉Var(w)Var(n) + 〈w〉3�3(n),

(A4)

where �3(w) and �3(n) are the third central moments of w and n,
respectively. From the property of a Poisson distribution (Spiegel,
1982), the following identities are found:

〈n〉 = Var〈n〉 = �3(n). (A5)

Therefore, Eqs. (A3) and (A4) become

Var(G) = 〈n〉〈w2〉 (A6-1)

and

�3(G) = 〈n〉〈w3〉. (A6-2)

Following their definitions, the coefficient of variation Cv and
the skewness ˛3 can be expressed in terms of the moments of w
and the potency mean:

Cv = Var(G)1/2

〈G〉 = 〈w2〉1/2

√〈n〉〈w〉 = 〈w2〉1/2

G1/2
0 〈w〉1/2

, (A7)

˛3 = �3(G)

Var(G)3/2
= 〈w3〉

√〈n〉〈w2〉3/2
= 〈w〉1/2〈w3〉

G1/2
0 〈w2〉3/2

. (A8)

Eqs. (A7) and (A8) are the general forms for any particle size
distribution. Both equations show an inverse proportionality to the
square root of G0 and the de-coupling from particle size distribution
(i.e. the moments of w). Assume there is no loss of API and the
potency mean is 100% of the target dose, i.e. D = G0. We will regard
D and G0 interchangeable hereafter. Assuming the mass of each API
particle can be expressed as the product of the true density � and a
volume-equivalent sphere, the moments of w can be expressed in
a discrete form:

〈w〉 = ��

6

N∑
i=1

p(di)di
3,

〈w2〉 =
(

��

6

)2 N∑
i=1

p(di)di
6,

〈w3〉 =
(

��

6

)3 N∑
i=1

p(di)di
9,

(A9)

where p(di) is the number frequency for particles with a diameter
di. The volume fraction fi for API particles with a diameter di can be
expressed as

fi = p(di)di
3∑N

j=1p(dj)dj
3

, (A10)

where N denotes the total number of the particle sizes.
Thus, Eq. (A8) and (A7) can be written as

˛3 =
(

��

6D

)1/2
∑N

i=1fid
6
i(∑N

fid
3
)3/2

, (A11)
i=1 i

Cv =
√

��

6D

√√√√ N∑
i=1

fidi
3. (A12)
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Note that Eq. (A12) was first given by Johnson (1972).
For the special case of a log-normal particle size distribution, the

requency density function is written as

˜(d) = 1√
2��d

e−1/2((ln d−�)/(�))2
, (A13)

here � = ln �g and � = ln d50. The kth raw moment of the log-
ormal distribution are (Aitchison and Brown, 1957)

�′
1 = 〈d〉 = dm = e�+�2/2 = e�(1 + c2)

1/2
,

�′
k

= 〈dk〉 = �′k
1(1 + c2)

k(k−1)/2
,

(A14)

here c is the arithmetic coefficient of variation and dm is the arith-
etic mean diameter of the particle size. Thus, Eq. (A9) can be

eadily converted to

〈w〉 = ��

6
�′

3,

〈w2〉 =
(

��

6

)2
�′

6,

〈w3〉 =
(

��

6

)3
�′

9.

(A15)

Substituting Eq. (A15) into Eq. (A8), the skewness becomes

3 =
√

��

6D
d3/2

m (1 + C2)
15

. (A16)

Similarly, one can easily recover the equation given by
alkowsky and Bolton (1990) by substituting Eq. (A15) into Eq.
A7):

v =
√

��

6D
d3/2

m (1 + c2)
6
. (A17)
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